Feedback learning particle swarm optimization

نویسندگان

  • Yang Tang
  • Zidong Wang
  • Jian-An Fang
چکیده

In this paper, a feedback learning particle swarm optimization algorithm with quadratic inertia weight (FLPSOQIW) is developed to solve optimization problems. The proposed FLPSO-QIW consists of four steps. Firstly, the inertia weight is calculated by a designed quadratic function instead of conventional linearly decreasing function. Secondly, acceleration coefficients are determined not only by the generation number but also by the search environment described by each particle’s history best fitness information. Thirdly, the feedback fitness information of each particle is used to automatically design the learning probabilities. Fourthly, an elite stochastic learning (ELS) method is used to refine the solution. The FLPSO-QIW has been comprehensively evaluated on 18 unimodal, multimodal and composite benchmark functions with or without rotation. Compared with various state-of-the-art PSO algorithms, the performance of FLPSO-QIW is promising and competitive. The effects of parameter adaptation, parameter sensitivity and proposed mechanism are discussed in detail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Comprehensive Learning Cooperative Particle Swarm Optimization with Fuzzy Inertia Weight (ECLCFPSO-IW)

So far various methods for optimization presented and one of most popular of them are optimization algorithms based on swarm intelligence and also one of most successful of them is Particle Swarm Optimization (PSO). Prior some efforts by applying fuzzy logic for improving defects of PSO such as trapping in local optimums and early convergence has been done. Moreover to overcome the problem of i...

متن کامل

Q-Value Based Particle Swarm Optimization for Reinforcement Neuro- Fuzzy System Design

This paper proposes a combination of particle swarm optimization (PSO) and Q-value based safe reinforcement learning scheme for neuro-fuzzy systems (NFS). The proposed Q-value based particle swarm optimization (QPSO) fulfills PSO-based NFS with reinforcement learning; that is, it provides PSO-based NFS an alternative to learn optimal control policies under environments where only weak reinforce...

متن کامل

AN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION

This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...

متن کامل

Particle Swarm Optimization for Automatic Selection of Relevance Feedback Heuristics

Relevance feedback (RF) is an iterative process which refines the retrievals by utilizing user’s feedback marked on retrieved results. Recent research has focused on the optimization for RF heuristic selection. In this paper, we propose an automatic RF heuristic selection framework which automatically chooses the best RF heuristic for the given query. The proposed method performs two learning t...

متن کامل

An Efficient Symbiotic Particle Swarm Optimization for Recurrent Func- tional Neural Fuzzy Network Design

In this paper, a recurrent functional neural fuzzy network (RFNFN) with symbiotic particle swarm optimization (SPSO) is proposed for solving identification and prediction problems. The proposed RFNFN model has feedback connections added in the membership function layer that can solve temporal problems. Moreover, an efficient learning algorithm, called symbiotic particle swarm optimization (SPSO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2011